Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:
математика
дискриминантный тензор
Линейный дискриминантный анализ (ЛДА, англ. Linear Discriminant Analysis, LDA), нормальный дискриминантный анализ (англ. Normal Discriminant Analysis, NDA) или анализ дискриминантных функций (англ. Discriminant Function Analysis) является обобщением линейного дискриминанта Фишера, метода, используемого в статистике, распознавании образов и машинном обучении для поиска линейной комбинации признаков, которая описывает или разделяет два или более классов или событий. Получившаяся комбинация может быть использована как линейный классификатор, или, более часто, для снижения размерности перед классификацией.
ЛДА тесно связан с дисперсионным анализом (англ. ANalyse Of Variance=ANOVA) и регрессионным анализом, которые также пытаются выразить одну зависимую переменную в виде линейной комбинации других признаков или измерений. Однако дисперсионный анализ использует качественные независимые переменные и непрерывную зависимую переменную, в то время как дискриминантный анализ имеет непрерывные независимые переменные и качественную зависимую переменную (то есть метку класса). Логистическая регрессия и пробит-регрессия больше похожи на ЛДА, чем дисперсионный анализ, так как они так же объясняют качественную переменную через непрерывные независимые переменные. Эти другие методы более предпочтительны в приложениях, в которых нет резона предполагать, что независимые переменные нормально распределены, что является фундаментальным предположением метода ЛДА.
ЛДА тесно связан также c методом главных компонент (МГК, англ. Principal Component Analysis, PCA) и факторным анализом тем, что они ищут линейные комбинации переменных, которые лучшим образом объясняют данные. ЛДА явным образом пытается моделировать разницу между классами данных. МГК, с другой стороны, не принимает во внимание какую-либо разницу в классах, а факторный анализ строит комбинации признаков, опираясь скорее на различия, а не на сходства. Дискриминантный анализ отличается также от факторного анализа тем, что не является независимой техникой — для его работы должно быть определено различие между независимыми переменными и зависимыми переменными (последние называются также критериальными переменными).
ЛДА работает, когда измерения, сделанные на независимых переменных для каждого наблюдения, являются непрерывными величинами. Когда имеем дело с качественными независимыми переменными, эквивалентной техникой является дискриминантный анализ соответствий.
Дискриминантный анализ используется, когда группы известны априори (в отличие от кластерного анализа). Каждый случай должен иметь значение в одной или нескольких мерах количественного предсказания и значение на групповой мере. Выражаясь простыми терминами, анализ дискриминантных функций является классификацией, разбивающей объекты на группы, классы или категории некоторого типа.